火星观测历史

维基百科,自由的百科全书
跳到导航 跳到搜索
哈勃望远镜观测到的火星最清晰的图像: 尽管美国化学学会的筋膜指进入了火星,在全分辨率下,其空间规模达到了5英里(每像素8公里)。

火星观测历史是关于火星观测记录在册的历史。 早期的火星观测记录可以追溯到公元前两千年古埃及天文学家的时代。 中国关于火星运动的记录出现在周朝建立之前(公元前1045年)。 巴比伦天文学家对火星的位置进行了详细的观测,他们发明了算术技术来预测火星的未来位置。 古希腊哲学家和天文学家发明了地心说来解释行星的运动。 在古希腊和古印度文献中可以找到对火星角直径的测量相关记载。 16世纪,尼古拉·哥白尼提出了太阳系日心说,这个模型提出行星沿着环绕太阳的圆形轨道运行。 约翰内斯 · 开普勒对此进行了修正,得出了一条更符合观测数据的火星椭圆轨道

1610年伽利略第一次用望远镜观测火星。 在一个世纪内,天文学家发现了这颗行星上明显的反照率特征,包括黑色的大瑟提斯高原和极地冰盖。 他们能够确定行星的自转周期和轴向倾斜。 这些观测主要是在火星与太阳处于相对位置的时间间隔内进行的,在这个时间间隔内,地球离火星最近。19世纪早期发明的高级望远镜使得人们能够详细绘制火星永恒的反照率特征。1840年 第一张粗略的火星地图出版,1877年之后绘制出了更精确的地图。 当天文学家误以为他们已经探测到了火星大气层上水的光谱特征时,火星上存在生命的说法逐渐流行起来。 珀西瓦尔 · 洛厄尔相信他可以看到一个人造火星运河[1] 这些线性特征后来被证明是视错觉,大气层太薄,不具备类似地球的行星适居性

自19世纪70年代以来,人们就观测到了火星上的黄色云层,欧仁·米歇尔·安东尼亚第认为这些云层是被风吹起的沙子或尘埃。 20世纪20年代,测量出了火星表面温度从 -85到7摄氏度(- 121到45华氏度)。 并且大气层是干旱的,只有微量的氧气和水。 1947年,杰拉德·柯伊伯发现薄薄的火星大气层星云中含有大量的二氧化碳,大约是地球大气中二氧化碳含量的两倍。 火星反照率特征是在1960年由国际天文联会第一次正式命名。 自20世纪60年代以来,已经发射了多枚机器人航天器从运行轨道和火星表面探测火星。 这颗行星一直在地面和太空仪器大范围的电磁波谱的监视之下。 通过在地球上发现的火星陨石,实验室能够对火星的化学条件进行研究。

1590年10月13日,德国天文学家梅斯特林观察到金星掩星火星。 他的一个学生,约翰内斯 · 开普勒,很快成为哥白尼体系的信徒。 完成学业后,开普勒成为丹麦贵族和天文学家第谷 · 布拉赫的助手。 随着获得第谷详细的火星观测资料的许可,开普勒开始着手用数学方法组装一个替代普尔滕尼克表。 在多次未能按照哥白尼学说的要求将火星的运动适应到一个圆形轨道之后,他成功地将第谷的观察结果进行了匹配,假设轨道是一个椭圆,而太阳位于其中一个焦点上。 他的模型成为开普勒行星运动定律的基础,这些定律在他的多卷本著作《天文学缩影》(Epitome Astronomiae Copernicanae)中发表于1615年至1621年间。

早期望远镜观测[编辑]

在火星最接近地球的时候,它的角直径是25角秒(的单位) ; 这对于肉眼来说太小了,无法分辨。 因此,在望远镜发明之前,除了行星在天空中的位置,我们对它一无所知。[2] 意大利科学家伽利略·伽利莱是已知的第一个使用望远镜进行天文观测的人。记录显示,他从1610年9月开始用望远镜观察火星。[3] 这台仪器太原始,无法显示行星表面的任何细节,[4]因此他设定了目标,观测火星是否表现出与金星月球相似的部分黑暗相位。虽然他不确定自己能否成功,但是到了12月份,他注意到火星角直径的确缩小了。 1645年,波兰天文学家约翰·赫维留成功地观测到火星的一个相位。[5]

An orange disk with a darker region at center and darker bands in the upper and lower halves. A white patch at the top is an ice cap, and fuzzy white regions at the bottom and the right side of the disk are cloud formations.
低反照率特性大瑟提斯高原在圆盘可见。 美国宇航局 / 哈勃空间望远镜拍摄。

1644年,意大利耶稣会士丹尼洛 · 巴托利称在火星上看到了两块较暗的地方。 在1651年、1653年和1655年的天体对立期间,火星最接近地球时,意大利天文学家乔万尼·巴特斯达·里奇奥利和他的学生弗朗西斯科·马里亚·格里马尔迪注意到火星上有不同的反照率[6] 第一个绘制火星地形特征地图的人是荷兰天文学家克里斯蒂安·惠更斯。 1659年11月28日,他绘制了一幅火星图,上面显示了一个独特的黑暗区域,现在被称为大瑟提斯高原,可能是一个极地冰盖。[7] 同年,他成功地测量了这颗行星的自转周期约为24小时。[8] 他粗略估计了火星的直径,大约是地球直径的60% ,与现在测量的53% 较为符合。[9] 也许第一次火星南极冰帽的概念是意大利天文学家乔凡尼·多美尼科·卡西尼于1666年提出的。 同年,他利用对火星表面标记的观测,确定了一个24小时40分钟的自转周期。 这与目前普遍接受值相差不到三分钟。 1672年,惠更斯观察到到北极有一顶毛茸茸的白帽子。[10]

1671年,卡西尼成为巴黎天文台的第一任主任后,他解决了太阳系大小的问题。 根据开普勒第三定律确定了行星轨道的相对大小,所以需要确定行星轨道之一的实际大小。 为此,根据地球上不同点的背景恒星测量了火星的位置,从而测量了火星的日视差。 在这一年里,这颗行星正沿着它的轨道移动到离太阳最近的地方(近日点对日点) ,这使得它离地球特别近。 卡西尼和皮卡德在巴黎确定了火星的位置,而法国天文学家里希尔从南美洲的开云确定了火星的位置。 虽然这些观测结果受到仪器质量的影响,但卡西尼号计算出的视差与正确值相差不到10% 。[11] 英国天文学家约翰 · 弗拉姆斯蒂德进行了对比测量,得到了类似的结果。[12]

1704年,意大利天文学家雅克 · 菲利普 · 马拉尔迪“对南方冰帽的系统研究,并观察随着行星的旋转,它所经历的变化”。 这表明冰帽并不在极地的中心。 他观察到冰帽的大小随着时间而变化。[13] 1777年,德国出生的英国天文学家威廉·赫歇尔开始对火星进行观测,特别针对火星的极冠进行观测。 1781年,他注意到南方冰帽看起来“非常大” ,他认为这是因为在过去的12个月里南极一直处于黑暗之中。 到了1784年,南极冰帽变小了很多,这表明冰帽随着地球季节变化而变化,因此它是由冰组成的。 1781年,他推测火星的自转周期为24小时39分21.67秒,并测量了火星两极对轨道平面的轴向倾斜为28.5秒。 他指出,火星有”相当大却温和的大气层,因此其居民可能在许多方面与我们类似”。[14] [15]在1796年到1809年之间,法国天文学家奥诺雷弗劳格盖斯注意到火星上的模糊图象,认为“赭色的面纱”覆盖了火星表面。 这可能是最早关于火星上黄云或风暴的报道。[16][17]

完善行星参数[编辑]

Two orange-hued disks. The one at left shows distinct darker regions along with cloudy areas near the top and bottom. In the right image, features are obscured by an orange haze. An white ice cap is visible at the bottom of both disks.
左图中,在极地附近可以看到薄薄的火星云。 右图中,火星表面被沙尘暴遮盖。 美国宇航局 / 哈勃空间望远镜拍摄的图片

19世纪70年代,夏帕瑞丽观测到黄云造成的地表模糊现象。 在1892年和1907年的对立期间观测到黄云的证据。 1909年,安东尼亚迪指出黄云的出现与反照率特征的模糊有关。 他发现当火星距离太阳最近时,在相反的位置上火星会显得更黄,而且会接收到更多的能量。 他认为风沙或灰尘是造成云层的原因。[18]

1894年,美国天文学家威廉·华莱士·坎贝尔发现火星的光谱与月球的光谱完全相同,这使人们对新兴的火星大气层与地球大气层相似的理论产生了怀疑。 之前探测到的火星大气中的水被解释为不利条件,坎贝尔确定水完全来自地球的大气层。 尽管他同意冰帽确实表明大气中存在水,但他不认为冰帽足够大到可以探测到水蒸气。[19]当时,坎贝尔的说法被认为是有争议的,并受到天文学界成员的批评,但在1925年得到了美国天文学家沃尔特·亚当斯的证实。[20]

参考资料[编辑]

  1. ^ Dunlap, David W. Life on Mars? You Read It Here First.. New York Times. October 1, 2015 [October 1, 2015]. (原始内容存档于2015-10-01). 
  2. ^ Bone, Neil (2003). Mars Observer's Guide. Firefly Books. p. 39. ISBN 1-55297-802-8.
  3. ^ Peters, William T. The Appearances of Venus and Mars in 1610. Journal for the History of Astronomy. 1984-10, 15 (3): 211–214 [2020-05-16]. ISSN 0021-8286. doi:10.1177/002182868401500306. (原始内容存档于2019-06-08) (英语). Peters, W. T. (October 1984). "The appearance of Venus and Mars in 1610". Journal for the History of Astronomy. 15 (3): 211–214. Bibcode:1984JHA....15..211P. doi:10.1177/002182868401500306.
  4. ^ Harland, David Michael. Water and the search for life on Mars. 2005. ISBN 0-387-26020-X. 
  5. ^ Moore, P. The mapping of Mars. Journal of the British Astronomical Association. 1984, (94 (2)): 45-54 [2020-05-16]. (原始内容存档于2020-08-01). 
  6. ^ Harland, David Michael. Water and the search for life on Mars. 2005. ISBN 0-387-26020-X. 
  7. ^ Strauss, David. The Planet Mars: A History of Observation and Discovery. William Sheehan. Isis. 1997-06, 88 (2): 324–325. ISSN 0021-1753. doi:10.1086/383703. 
  8. ^ Moore, P. The mapping of Mars. Journal of the British Astronomical Association. 1984, (94 (2)): 45-54 [2020-05-16]. (原始内容存档于2020-08-01). 
  9. ^ Ferris, Timothy. Coming of age in the Milky Way. HarperCollins. 2003: 125. ISBN 0-06-053595-4. 
  10. ^ Rabkin, Eric S. Mars: a tour of the human imagination. Greenwood Publishing Group. 2005: 60–61. ISBN 0-275-98719-1. 
  11. ^ Hirshfeld, Alan. Parallax: the race to measure the cosmos. Macmillan. 2001: 60–61. ISBN 0-7167-3711-6. 
  12. ^ Taton, Reni (2003). Taton, Reni; Wilson, Curtis; Hoskin, Michael (eds.). Planetary astronomy from the Renaissance to the rise of astrophysics, part A, Tycho Brahe to Newton. Cambridge University Press. : 116–117. ISBN 0-521-54205-7. 
  13. ^ Canadian Weather Conditions for 1954 June 30 Total Solar Eclipse. Publications of the Astronomical Society of the Pacific. 1954-02, 66: 37. ISSN 0004-6280. doi:10.1086/126649. 
  14. ^ MacPherson, Hector Copland. Herschel. Macmillan. 1919. 
  15. ^ Herschel, John Frederick William. CHAPTER VII. Outlines of Astronomy. Cambridge: Cambridge University Press. : 239–263. ISBN 978-0-511-70911-1. 
  16. ^ Capen, Charles F.; Martin, Leonard J. (1971). The developing stages of the Martian yellow storm of 1971. Bulletin of the Lowell Observatory. [2020-05-16]. (原始内容存档于2019-09-06). 
  17. ^ Sheehan, William (1996). "Chapter 3: a situation similar to ours". The Planet Mars: A History of Observation and Discovery. University of Arizona. Archived from the original on 2010-06-25. Retrieved 2010-01-16.. 
  18. ^ Barenblatt, G. I.; Golitsyn, G. S. Mars: Local Structure of Dust Storms. Symposium - International Astronomical Union. 1974, 65: 317–317. ISSN 0074-1809. doi:10.1017/s0074180900025535.. 
  19. ^ Campbell, W. W. The Spectrum of Mars. Publications of the Astronomical Society of the Pacific. 1894-08, 6: 228. ISSN 0004-6280. doi:10.1086/120855. 
  20. ^ Devorkin, David H. (March 1977). "W. W. Campbell's spectroscopic study of the Martian atmosphere". Quarterly Journal of the Royal Astronomical Society. 18: 37–53. Bibcode:1977QJRAS..18...37D..