本页使用了标题或全文手工转换

生命週期評估

维基百科,自由的百科全书
跳到导航 跳到搜索

生命週期評估(英語:Life-cycle assesment;德語:Ökobilanzierung)係指分析評估一項產品從生產、使用到廢棄或回收再利用等不同階段所造成的環境衝擊。例如:產品或技術的生命週期是指從搖籃到墳墓(英語:Cradle-to-grave)的整個時期,涵蓋了原物枓的取得及處理,產品製造、運輸、使用和維護,到最收回或是終處置階段。[1][2]

生命週期評估會條列出所有產品相關產業(如:製造、使用及服務)中使用的能源和材料,並計算出對環境的排放量,[3]進而評估可能對環境的影響。最終目的是為了紀錄並改善產品對環境的負面影響。[3]

這裡所謂的環境衝擊,包括能源使用、資源的耗用、污染排放等。生命周期评估通过以下几点来避免对环境冲击考虑的短见:

  • 收集能量和资源在系统内的投入以及排放造成的环境影响
  • 通过测量的系统内的投入以及排放评价潜在影响
  • 通过展示结果以便作出背景信息充足的决策

與火力發電相比,核電,風能和水力發電大大降低了環境污染。這三種發電方式在運營過程中對環境的直接影響與火力發電廠相比更少[1]

生命週期評估有許多國際通用的標準程序,其中包含國際標準化組織14000環境管環標準系列中的ISO 14040[4]和ISO 14044[5]

然而,此評估方法在某些方面受到批評且有爭議。例如:評估涵蓋的範圍、方法的一致性、份業者可能選擇性的使用資料及參數...等。

程序[编辑]

根據ISO 14040與14044標準,生命週期評估必須包含四個階段,分別是目標與範疇界定生命週期盤查分析生命週期衝擊評估,以及生命週期闡釋


生命週期能源分析[编辑]

生命週期能源分析(英語:Life cycle energy analysis)計算生產一個產品總共需要使用的能量。不僅要考慮製造過程中直接使用的能量,還考慮生產製造過程所需的組件,材料和服務所使用的能量。[6]

  • 能源製造:此方法可用在評估不同能源製造的技術(例如:核能發電太陽能發電和提煉石油)所的淨生產能源[註 1]。例如:製造太陽能板所使用的能源,相當於其數月至數年的發電量。[7][8]
  • 能源回收英语Energy recovery:當一個產品或材料最後的處置為送去焚化爐燃燒時,其產生的能源可用來發電。和燃氣燃煤發電相比,焚燒垃圾發電對環境的影響較小。[9]焚燒垃圾在短時間內產生的溫室氣體垃圾填埋還多,但可透過過濾和處理系統來有效降低汙染。研究指出,長期來看焚燒垃圾發電的能量使用和溫室氣體排放,都遠低於垃圾填埋。[10]
垃圾填理和焚燒垃圾發電的生命週期分析[10]
垃圾填埋 焚燒垃圾發電
直接影響 生命週期 直接影響 生命週期
能源使用
(百萬焦耳
/噸廢棄物)
使用  22 30 354 410
回收 0 0 -530[註 2] -1458 [註 3]
淨總值 22 30 -176 -1048
溫室氣體排放
(公斤二氧化碳
/噸廢棄物)
產生 1313 1313.2 737 746.2
減少 0 0 0 -109 [註 4]
淨總值 1313 1313.2 737 637

注釋[编辑]

  1. ^ 淨生產能源為生產的能源,減去生產過程中直接或間接使用的能源。
  2. ^ 燃燒垃圾發電。
  3. ^ 燃燒垃圾發電及減少火力發電的使用。
  4. ^ 因發電而減少火力發電的使用,進而減少溫室氣體排放。

参考资料[编辑]

  1. ^ 1.0 1.1 Wang et al. A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study, Applied Energy Volume 249, 1 September 2019, Pages 37-45, https://www.sciencedirect.com/science/article/abs/pii/S0306261919307664
  2. ^ 劉恩廷. 生命週期評估概念與應用. BiomassDesk. [2020-10-21]. 
  3. ^ 3.0 3.1 EPA NRMRL Staff  . Life Cycle Assessment (LCA). Washington, DC. EPA National Risk Management Research Laboratory (NRMRL). 6 March 2012 [8 December 2019]. (原始内容存档于6 March 2012). 
  4. ^ ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. ISO. [2020-10-21]. 
  5. ^ ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines. ISO. [2020-10-21]. 
  6. ^ T. Ramesh; Ravi Prakash; K.K. Shukla. Life cycle energy analysis of buildings: An overview. Energy and Buildings. 2010, 42 (10): 1592–1600. doi:10.1016/j.enbuild.2010.05.007. 
  7. ^ Tian, Xueyu; Stranks, Samuel D.; You, Fengqi. Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells. Science Advances. July 2020, 6 (31): eabb0055. ISSN 2375-2548. PMC 7399695. PMID 32789177. doi:10.1126/sciadv.abb0055 (英语). 
  8. ^ Gerbinet, Saïcha; Belboom, Sandra; Léonard, Angélique. Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews. 2014-10-01, 38: 747–753. ISSN 1364-0321. doi:10.1016/j.rser.2014.07.043 (英语). 
  9. ^ Damgaard, A, et al. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Management 30 (2010) 1244–1250.
  10. ^ 10.0 10.1 Liamsanguan, C., Gheewala, S.H., LCA: A decision support tool for environmental assessment of MSW management systems. Jour. of Environ. Mgmt. 87 (2008) 132–138.