大二十面体

维基百科,自由的百科全书
跳到导航 跳到搜索
大二十面体
大二十面体
(按这里观看旋转模型)
类别星形正多面体
对偶多面体大星形十二面体
识别
名称大二十面体
参考索引U53, C69, W41
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
施莱夫利符号{3,5/2}
威佐夫符号
英语Wythoff symbol
5/2 | 2 3
性质
20
30
顶点12
欧拉特征数F=20, E=30, V=12 (χ=2)
亏格0
组成与布局
面的种类20个正三角形
面的布局
英语Face configuration
20{3}
顶点图(35)/2
对称性
对称群Ih, H3, [5,3], (*532)
特性
正、等面、等边、等角
图像
立体图 Great icosahedron vertfig.png
(35)/2
顶点图
Great stellated dodecahedron.png
大星形十二面体
(对偶多面体)

几何学中,大二十面体是一种星形二十面体,由20个正三角形组成,其在非凸均匀多面体被编号为U53、在温尼尔多面体模型被编号为W41,是四种星形正多面体之一,对偶多面体大星形十二面体

性质[编辑]

大二十面体共有20个面、30条边和12个顶点[1][2],20个面中,全部都是正三角形,且每个顶点都是5个三角形的公共顶点,但其以类似五角星的方式安排面的位置,使面互相相交,顶点图为五角星,在施莱夫利符号中可以用{3,5/2}来表示,而在考克斯特符号英语Coxeter-Dynkin digram中以CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png表示。

顶点座标[编辑]

边长为1位于原点大二十面体的顶点座标[3]

二面角[编辑]

大二十面体是一种正图形,因此其每个二面角都相等,皆为两个正三角形的棱之交角,其值为五平方根的三分之一之反余弦[4]

相关多面体[编辑]

名称 大星形十二面体 截角大星形十二面体 大截半二十面体 截角大二十面体 大二十面体
考式英语Coxeter-Dynkin digram CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
图像 Great stellated dodecahedron.png Icosahedron.png Great icosidodecahedron.png Great truncated icosahedron.png Great icosahedron.png

对偶复合体[编辑]

大二十面体与其对偶的复合体为复合大二十面体大星形十二面体。其共有32个面、60条边和32个顶点,其尤拉示性数为4,亏格为-1,有12个非凸面[5],是一种截半二十面体的星形多面体[6]

Compound of great icosahedron and stellated dodecahedron.png Second compound stellation of icosidecahedron facets.png
从三角形的星状图
Second compound stellation of icosidecahedron pentfacets.png
从五边形的星状图

参考文献[编辑]

  1. Wenninger, Magnus. Polyhedron Models. Cambridge University Press. 1974. ISBN 0-521-09859-9. 
  2. Coxeter, Harold Scott MacDonald; Du Val, P.; Flather, H. T.; Petrie, J. F. The fifty-nine icosahedra 3rd. Tarquin. 1999. ISBN 978-1-899618-32-3. MR 0676126.  (1st Edn University of Toronto (1938))
  3. H.S.M. Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, 3.6 6.2 Stellating the Platonic solids, pp.96-104
  1. ^ Uniform Polyhedra 53: great icosahedron. mathconsult.ch. [2016-09-02]. (原始内容存档于2016-03-25). 
  2. ^ great icosahedron. bulatov.org. [2016-09-02]. (原始内容存档于2016-03-27). 
  3. ^ Data of Great Icosahedron. dmccooey.com. [2016-09-02]. (原始内容存档于2016-09-02). 
  4. ^ Kepler-Poinsot Solids: Great Icosahedron. dmccooey.com. [2016-09-02]. (原始内容存档于2016-03-24). 
  5. ^ compound of great stellated dodecahedron and great icosahedron. bulatov.org. [2016-09-02]. (原始内容存档于2015-09-06). 
  6. ^ 埃里克·韦斯坦因. Great Icosahedron-Great Stellated Dodecahedron Compound. MathWorld. 

外部链接[编辑]